Generalized Q-functions

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2006 J. Phys. A: Math. Gen. 3913747
(http://iopscience.iop.org/0305-4470/39/44/009)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.106
The article was downloaded on 03/06/2010 at 04:54

Please note that terms and conditions apply.

Generalized Q-functions

T B Smith
Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK

Received 3 July 2006, in final form 14 September 2006
Published 17 October 2006
Online at stacks.iop.org/JPhysA/39/13747

Abstract

The modulus squared of a class of wavefunctions defined on phase space is used to define a generalized family of Q or Husimi functions. A parameter λ specifies orderings in a mapping from the operator $|\psi\rangle\langle\sigma|$ to the corresponding phase space wavefunction, where σ is a given fiducial vector. The choice $\lambda=0$ specifies the Weyl mapping and the Q-function so obtained is the usual one when $|\sigma\rangle$ is the vacuum state. More generally, any choice of λ in the range $(-1,1)$ corresponds to orderings varying between standard and antistandard. For all such orderings the generalized Q-functions are non-negative by construction. They are shown to be proportional to the expectation of the system state $\hat{\rho}$ with respect to a generalized displaced squeezed state which depends on λ and position (p, q) in phase space. Thus, when a system has been prepared in the state $\hat{\rho}$, a generalized Q-function is proportional to the probability of finding it in the generalized squeezed state. Any such Q-function can also be written as the smoothing of the Wigner function for the system state $\hat{\rho}$ by convolution with the Wigner function for the generalized squeezed state.

PACS numbers: 03.65.Ca, 03.65.Ta

1. Introduction

The Weyl transform [1, 2] associates operators with functions on phase space. In particular, the Wigner function $\rho(p, q)$ [3] is the Weyl transform of the density matrix divided by $h=2 \pi \hbar$. Although $\rho(p, q)$ does have many features of a classical distribution it can take on negative values, with bounds [5] given by $2 / h \geqslant \rho(p, q) \geqslant-2 / h$. Indeed Hudson [4] showed that the only pure states $\psi(x)$ for which the Wigner function is non-negative are Gaussian in x. This carries over to any number of dimensions [6], and also, for odd dimensions at least, to the formulation of discrete Wigner functions [7].

The Weyl correspondence between operators and functions on phase space-of which the Wigner function is an example-is a special case of the class of the correspondences given by Cohen [8]. In particular, if any Wigner function is convoluted, or smeared, by integration
with respect to the Wigner function of the vacuum state, itself a gaussian function on phase space, then the smoothed function, called the Q-function (or Husimi function), is non-negative and corresponds to an ordering in Cohen's class different from that of Wigner and Weyl [9]. More generally, if any Wigner function is convoluted with respect to a Gaussian function which is itself the Wigner function of a pure coherent state, then the result is non-negative [6, 9-13].

The Wigner function is bilinear with respect to wavefunctions. For instance if the Weyl transform of the pure state $|\psi\rangle\langle\psi|$ is written $(|\psi\rangle\langle\psi|)_{(p, q)}$, then the corresponding Wigner function $[3,5]$ is

$$
\begin{align*}
\rho(p, q) & =\frac{1}{h}(|\psi\rangle\langle\psi|)_{(p, q)} \\
& =\frac{1}{h} \int_{-\infty}^{\infty} \mathrm{d} x \exp \left(\frac{\mathrm{i}}{\hbar} p x\right) \psi\left(q-\frac{x}{2}\right) \psi^{*}\left(q+\frac{x}{2}\right), \tag{1}
\end{align*}
$$

so the smeared Wigner functions are also bilinear with respect to the wavefunctions.
It is also possible in a sense to smear the states themselves, for instance by projecting them onto a class of generalized displaced coherent states, defined [14] by

$$
\begin{equation*}
|p, q ; \sigma\rangle \equiv \hat{D}[p, q]|\sigma\rangle \tag{2}
\end{equation*}
$$

where $|\sigma\rangle$ is any reference 'fiducial' state, and

$$
\begin{equation*}
\hat{D}[p, q]=\mathrm{e}^{\frac{\mathrm{i}}{\hbar}(p \hat{q}-q \hat{p})} \tag{3}
\end{equation*}
$$

is Weyl's displacement operator. Then, corresponding to any wavefunction $|\psi\rangle$ one can define a 'smoothed' wavefunction on phase space by projecting it onto the coherent state:

$$
\begin{equation*}
\tilde{\psi}_{\sigma}(p, q) \equiv\langle\sigma| \hat{D}^{\dagger}[p, q]|\psi\rangle \tag{4}
\end{equation*}
$$

These functions and their time dependence when ψ is driven by the Hamiltonian $\hat{p}^{2} / 2 m+$ $V(q)$ have been studied for some choices of $|\sigma\rangle$ by Torres-Vega et al, Harriman, and others [15-17].

In this paper I generalize $\widetilde{\psi}_{\sigma}(p, q)$ to a phase space wavefunction $\widetilde{\psi}_{\sigma}^{(\lambda)}(p, q)$ by relating it to a class of orderings labelled by a parameter $\lambda \in(-1,+1)$, where $\widetilde{\psi}_{\sigma}^{(0)}(p, q)=\widetilde{\psi}_{\sigma}(p, q)$, equation (4). A given value of λ specifies an association between functions on phase space and operators, $A(p, q) \stackrel{(\lambda)}{\longleftrightarrow} \hat{A}$, where $\lambda=-1$ gives the standard ordering (e.g. $p^{n} q^{m} \longleftrightarrow \hat{q}^{m} \hat{p}^{n}$), $\lambda=+1$ gives the anti-standard rule (e.g. $p^{n} q^{m} \longleftrightarrow \hat{p}^{n} \hat{q}^{m}$), and $\lambda=0$ gives the symmetric or Weyl association, of which (1) is an example with $\rho(p, q) \longleftrightarrow \hat{\rho} / h$. The time dependence, effectively, of $\widetilde{\psi}_{\sigma}^{(\lambda)}(p, q)$ has been studied in [18].
$\widetilde{\psi}_{\sigma}^{(\lambda)}(p, q)$ relates to the λ-orderings of the operator $|\psi\rangle\langle\sigma|$, which is linear in the states $|\psi\rangle$ (the reference or fiducial state is held fixed), but the density matrix $\hat{\rho}=|\psi\rangle\langle\psi|$ is bilinear, so a chosen ordering for $|\psi\rangle\langle\sigma|$ will not be expected to apply to the density matrix, indeed it may not even be of the λ-class. The generalized Q-function for a pure state $|\lambda\rangle$, defined as $\left|\widetilde{\psi}_{\sigma}^{(\lambda)}(p, q)\right|^{2} / h$, is normalized with respect to the integral $\int \mathrm{d} p \mathrm{~d} q$ over all of phase space. The main results of this paper are that the generalized Q-function corresponding to any state $\hat{\rho}$ is, first, non-negative, second, proportional to the expectation of ρ with respect to a certain generalized displaced squeezed state which depends upon σ, λ and (p, q) and, third, proportional to the convolution of the Wigner functions for ρ with the Wigner function for that squeezed state.

The field of quantum mechanics in phase space is a large one, perhaps starting with the analysis of Weyl [1, 2] and of Wigner [3]. In the context of this paper Bopp [19] in 1956 considered classical-like implications of that Q-function corresponding to the Weyl ordering
$(\lambda=0)$ and with fiducial state chosen (as is usually the case) to be the vacuum state $|0\rangle \equiv\left|h_{0}\right\rangle$, namely $\left\langle h_{0}\right| \hat{D}[p, q]^{\dagger} \hat{\rho}(t) \hat{D}[p, q]\left|h_{0}\right\rangle$. That this can be related to the modulus squared of a wavefunction, here $\widetilde{\psi}_{h_{0}}^{(0)}(p, q)$ was pointed out by Mizrahi [20] who also studied some of its properties. On a different tack, Cahill and Glauber [21, 22] have studied at length a family of orderings (the s-family) $\mathbf{A} \stackrel{(s)}{\longleftrightarrow} A(p, q)$, centred around the annihilation and creation operators \hat{a} and \hat{a}^{\dagger}, where (in my notation) $\hat{a}=\frac{1}{\sqrt{2}}\left(\alpha \hat{q}+\mathrm{i} \frac{\hat{p}}{\alpha \hbar}\right)$-where α is a real parameterso that $\left[\hat{a}, \hat{a}^{\dagger}\right]=1$. Defining the complex numbers $\mathcal{A}=\frac{1}{\sqrt{2}}\left(\alpha q+\mathrm{i} \frac{p}{\alpha \hbar}\right)$, when $s=-1$ their mapping corresponds to the association (antinormal ordering) $\hat{a}^{m} \hat{a}^{\dagger n} \longleftrightarrow \mathcal{A}^{m} \mathcal{A}^{* n}$, when $s=1$ the association is $\hat{a}^{\dagger m} \hat{a}^{n} \longleftrightarrow \mathcal{A}^{* m} \mathcal{A}^{n}$ (normal ordering), and when $s=0$ the ordering is that of Weyl. Thus the λ and s mappings complement each other, and overlap at $\lambda=0=s$. Among their many interesting results Cahill and Glauber define what is effectively a phase space wavefunction corresponding to $|\psi\rangle\left\langle h_{0}\right|$ for their s-ordering, but they do not relate its modulus squared to any s-ordered Q-function. They do, however, express the usual Q-function, $\left\langle h_{0}\right| \hat{D}[p, q]^{\dagger} \hat{\rho}(t) \hat{D}[p, q]\left|h_{0}\right\rangle$, as a smoothed Wigner function.

In this note I start with the modulus squared of wavefunctions on phase space, of which equation (4) is a special case, and show that it can correspond to smeared Wigner functions, where the smearing functions themselves are Wigner functions of generalized displaced squeezed states. Section 2 discusses wavefunctions on phase space and generalizes them to the λ-class of orderings. Section 3 develops expressions for the Q-functions based on these wavefunctions. Section 4 discusses some properties of these Q-functions.

2. Wavefunctions on phase space

It is often convenient to work with the Fourier transform of $\tilde{\psi}_{\sigma}(p, q)$, defined by

$$
\begin{align*}
\psi_{\sigma}(p, q) & =\int_{-\infty}^{\infty} \frac{\mathrm{d} p^{\prime} \mathrm{d} q^{\prime}}{h} \exp \left[\frac{\mathrm{i}}{\hbar}\left(p^{\prime} q-q^{\prime} p\right)\right] \widetilde{\psi}_{\sigma}\left(p^{\prime}, q^{\prime}\right) \\
& =\operatorname{Tr}(|\psi\rangle\langle\sigma| \hat{\Delta}(p, q)) \tag{5}
\end{align*}
$$

where [5]

$$
\begin{align*}
\hat{\Delta}(p, q) & =\int_{-\infty}^{\infty} \frac{\mathrm{d} p^{\prime} \mathrm{d} q^{\prime}}{h} \exp \left[-\frac{\mathrm{i}}{\hbar}\left(p^{\prime} q-q^{\prime} p\right)\right] \hat{D}\left[p^{\prime}, q^{\prime}\right] \\
& =\int_{-\infty}^{\infty} \mathrm{d} x \exp \left(\frac{\mathrm{i}}{\hbar} p x\right)\left|q+\frac{x}{2}\right\rangle\left\langle q-\frac{x}{2}\right| \tag{6}
\end{align*}
$$

The wavefunctions $\psi_{\sigma}(p, q)$ were defined in [18] where many of their properties are discussed. In particular, they are the Weyl transform of the operators $|\psi\rangle\langle\sigma|$. Indeed, the Weyl transform, which I shall write $(\hat{A})_{(p, q)}$ or $A_{(p, q)}$, and its associated operator \hat{A} are related [5] by

$$
\begin{equation*}
\hat{A}=\int_{-\infty}^{\infty} \frac{\mathrm{d} p \mathrm{~d} q}{h} A_{(p, q)} \hat{\Delta}(p, q) \tag{7}
\end{equation*}
$$

which, by virtue of the relation

$$
\begin{equation*}
\operatorname{Tr}\left(\hat{\Delta}(p, q) \hat{\Delta}\left(p^{\prime}, q^{\prime}\right)\right)=h \delta\left(p-p^{\prime}\right) \delta\left(q-q^{\prime}\right) \tag{8}
\end{equation*}
$$

can be inverted to give

$$
\begin{equation*}
A_{(p, q)}=\operatorname{Tr}(\hat{A} \hat{\Delta}(p, q)) \tag{9}
\end{equation*}
$$

So $\psi_{\sigma}(p, q)$ is the Weyl transform $(|\psi\rangle\langle\sigma|)_{(p, q)}$, and $\tilde{\psi}_{\sigma}(p, q)$ is its Fourier transform.

Another property of the Weyl transform which we need [5] is

$$
\begin{equation*}
\operatorname{Tr}(\hat{A} \hat{B})=\int_{-\infty}^{\infty} \frac{\mathrm{d} p \mathrm{~d} q}{h} A_{(p, q)} B_{(p, q)} \tag{10}
\end{equation*}
$$

Note from (6) that $\operatorname{Tr}(\hat{\Delta}(p, q))=1$ so, from (9), (1̂) $)_{(p, q)}=1$, and (letting $\hat{B}=\hat{1}$ in (10))

$$
\begin{equation*}
\operatorname{Tr} \hat{A}=\int_{-\infty}^{\infty} \frac{\mathrm{d} p \mathrm{~d} q}{h} A_{(p, q)} \tag{11}
\end{equation*}
$$

The essential characteristic of the Weyl correspondence follows from equations (3) and (9) together with the first of (6). It is

$$
\begin{equation*}
\left(\mathrm{e}^{\mathrm{i}(\xi \hat{q}+\eta \hat{p})}\right)_{(p, q)}=\mathrm{e}^{\mathrm{i}(\xi q+\eta p)} \tag{12}
\end{equation*}
$$

Other orderings defined by Cohen [8] can be specified by the generalization of (12) to the form

$$
\begin{equation*}
\left(\mathrm{e}^{\mathrm{i}(\hat{q}+\eta \hat{p})}\right)_{(p, q)}^{f}=\frac{1}{f(\xi, \eta)} \mathrm{e}^{\mathrm{i}(\xi q+\eta p)}=f^{-1}\left(-\mathrm{i} \partial_{q},-\mathrm{i} \partial_{p}\right) \mathrm{e}^{\mathrm{i}(\xi q+\eta p)}, \tag{13}
\end{equation*}
$$

where f^{-1} means $1 / f$ and the choice $f=1$ gives the Wigner-Weyl ordering. Note that when $f(0, \eta)=1=f(\xi, 0)$ then the Weyl transform of a function of \hat{q} (or \hat{p}) only is the same function of q (or p) only. If we particularize to the class of orderings defined by the function

$$
\begin{equation*}
f(\xi, \eta ; \lambda)=\mathrm{e}^{\mathrm{i} \frac{\hbar}{2} \lambda \xi \eta}, \tag{14}
\end{equation*}
$$

where λ is a real parameter lying in the interval $[-1,+1]$, then

$$
\begin{equation*}
\left(\mathrm{e}^{\mathrm{i}(\xi \hat{q}+\eta \hat{p})}\right)_{(p, q)}^{(\lambda)}=\mathrm{e}^{-\mathrm{i} \frac{\hbar}{2} \lambda \xi \eta} \mathrm{e}^{\mathrm{i}(\xi q+\eta p)} \tag{15}
\end{equation*}
$$

Use of the Baker-Campbell-Hausdorff theorem leads to the equivalent expressions

$$
\left(\mathrm{e}^{\mathrm{i} \xi \hat{q}} \mathrm{e}^{\mathrm{i} \eta \hat{p}}\right)_{(p, q)}^{(\lambda)}=\mathrm{e}^{-\frac{\mathrm{i} \hbar}{2}(\lambda+1) \xi \eta} \mathrm{e}^{\mathrm{i}(\xi q+\eta p)}
$$

and

$$
\left(\mathrm{e}^{\mathrm{i} \eta \hat{p}} \mathrm{e}^{\mathrm{i} \xi \hat{q}}\right)_{(p, q)}^{(\lambda)}=\mathrm{e}^{-\frac{\mathrm{i} \hbar}{2}(\lambda-1) \xi \eta} \mathrm{e}^{\mathrm{i}(\xi q+\eta p)}
$$

The choice $\lambda=-1$ in the first of these gives the 'standard' or ' p ' association (\hat{p} first, then \hat{q}),

$$
\left(\mathrm{e}^{\mathrm{i} \xi \hat{q}} \mathrm{e}^{\mathrm{i} \eta \hat{p}}\right)_{(p, q)}^{(-1)}=\mathrm{e}^{\mathrm{i}(\xi q+\eta p)}
$$

and the choice $\lambda=1$ in the second gives the ànti-standard association (\hat{q} first, then \hat{p}),

$$
\left(\mathrm{e}^{\mathrm{i} \eta \hat{p}} \mathrm{e}^{\mathrm{i} \xi \hat{q}}\right)_{(p, q)}^{(+1)}=\mathrm{e}^{\mathrm{i}(\xi q+\eta p)}
$$

while the Wigner-Weyl ordering, $\lambda=0$, puts \hat{p} and \hat{q} on equal footing, equation (12).
The generalization of $\psi_{\sigma}(p, q)$ to the family of orderings defined by equations (14) and (15) is given [18] by

$$
\begin{equation*}
\psi_{\sigma}^{(\lambda)}(p, q)=\operatorname{Tr}\left(|\psi\rangle\langle\sigma| \hat{\Delta}^{(\lambda)}(p, q)\right)=\langle\sigma| \hat{\Delta}^{(\lambda)}(p, q)|\psi\rangle, \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{\Delta}^{(\lambda)}(p, q)=\mathrm{e}^{\mathrm{i} \frac{\hbar}{2} \lambda \partial_{p} \partial_{q}} \hat{\Delta}(p, q) . \tag{17}
\end{equation*}
$$

Equations (16) and (17) generalize the phase space wavefunction $\psi_{\sigma}(p, q)$, the Weyl transform of $|\psi\rangle\langle\sigma|$, to the class of orderings defined by (14).

3. Q-functions

The functions $\psi_{\sigma}(p, q)$ are normalized-this follows from the second of equations (5) and (10)—and so too are the $\widetilde{\psi}_{\sigma}(p, q)$ by dint of the Fourier relation, equation (5). Further, by taking matrix elements of the quantities in equations (3) and (7) one finds [23] that

$$
\begin{equation*}
\hat{\Delta}(p, q)=2 \hat{D}[2 p, 2 q] \hat{\Pi} \quad \text { or } \quad \hat{D}[p, q]=\frac{1}{2} \hat{\Delta}(p / 2, q / 2) \hat{\Pi} \tag{18}
\end{equation*}
$$

where $\hat{\Pi}$ is the parity operator, i.e.

$$
\begin{equation*}
\hat{\Pi}=\int_{-\infty}^{\infty} \mathrm{d} x|x\rangle\langle-x| . \tag{19}
\end{equation*}
$$

From these equations we can define a generalized displacement operator as

$$
\begin{equation*}
\hat{D}^{(\lambda)}[p, q]=\frac{1}{2} \hat{\Delta}^{(\lambda)}(p / 2, q / 2) \hat{\Pi} \tag{20}
\end{equation*}
$$

with corresponding generalized 'coherent state' $\hat{D}^{(\lambda)}[p, q]|\sigma\rangle$ and phase space wavefunction (partner and equivalent to $\psi_{\sigma}^{(\lambda)}(p, q)$) given by

$$
\begin{equation*}
\widetilde{\psi}_{\sigma}^{(\lambda)}(p, q)=\langle\sigma| \hat{D}^{(\lambda) \dagger}[p, q]|\psi\rangle . \tag{21}
\end{equation*}
$$

Consider the product

$$
\begin{align*}
& \left(\mu_{\sigma}^{(\lambda)}(p, q)\right)^{*} \psi_{\sigma}^{(\lambda)}(p, q)=\int \mathrm{d} \tau^{\prime} \int \mathrm{d} \tau^{\prime \prime} \mathrm{e}^{\mathrm{i} \frac{\lambda}{2 \hbar} p^{\prime} q^{\prime}} \mathrm{e}^{-\mathrm{i} \frac{\lambda}{2 h} p^{\prime \prime} q^{\prime \prime}} \\
& \quad \times \mathrm{e}^{\frac{\mathrm{i}}{\hbar}\left(p^{\prime} q-q^{\prime} p\right)} \mathrm{e}^{-\frac{\mathrm{i}}{}\left(p^{\prime \prime} q-q^{\prime \prime} p\right)} \widetilde{\psi}_{\sigma}\left(p^{\prime}, q^{\prime}\right)\left(\widetilde{\mu}_{\sigma}\left(p^{\prime \prime}, q^{\prime \prime}\right)\right)^{*} \tag{22}
\end{align*}
$$

where I have used (5), (16) and (17) and $\int \mathrm{d} \tau^{\prime}$ stands for $\int_{-\infty}^{\infty} \mathrm{d} p^{\prime} \mathrm{d} q^{\prime} / h$, etc. By equations (4), (9) and (10) we can write
$\tilde{\psi}_{\sigma}\left(p^{\prime}, q^{\prime}\right)\left(\tilde{\mu}_{\sigma}\left(p^{\prime \prime}, q^{\prime \prime}\right)\right)^{*}=\int \mathrm{d} \tau(|\psi\rangle\langle\mu|)_{(p, q)}\left(\hat{D}\left(p^{\prime \prime}, q^{\prime \prime}\right)\left(|\sigma\rangle\langle\sigma| \hat{D}^{\dagger}\left(p^{\prime}, q^{\prime}\right)\right)_{(p, q)}\right.$,
which is an integral over the product of two Weyl transformed operators. In particular, by definition (9) the second term is
$\left(\hat{D}\left(p^{\prime \prime}, q^{\prime \prime}\right)\left(|\sigma\rangle\langle\sigma| \hat{D}^{\dagger}\left(p^{\prime}, q^{\prime}\right)\right)_{(p, q)}=\langle\sigma| \hat{D}^{\dagger}\left(p^{\prime}, q^{\prime}\right) \hat{\Delta}(p, q) \hat{D}\left(p^{\prime \prime}, q^{\prime \prime}\right)|\sigma\rangle\right.$.
To simplify this quantity one can express $\hat{\Delta}$ here in terms of \hat{D} (equation (6)) and then simplify the resulting triple product of displacement operators by means of these useful algebraic properties [14]:

$$
\begin{align*}
& \hat{D}^{\dagger}[p, q]=\hat{D}[-p,-q] \\
& \hat{D}^{\dagger}[p, q](\hat{p}, \hat{q}) \hat{D}[p, q]=(\hat{p}+p, \hat{q}+q) \tag{25}\\
& \hat{D}\left[p_{2}, q_{2}\right] \hat{D}\left[p_{1}, q_{1}\right]=\mathrm{e}^{\frac{i}{2 \hbar}\left(q_{1} p_{2}-q_{2} p_{1}\right)} \hat{D}\left[p_{1}+p_{2}, q_{1}+q_{2}\right] .
\end{align*}
$$

Utilizing the action of the unitary operator \hat{D} on $\hat{\Delta}$ itself can also help. For instance, using the second of (25) with the first of equations (6) one finds

$$
\begin{equation*}
\hat{D}^{\dagger}\left[p^{\prime}, q^{\prime}\right] \hat{\Delta}(p, q) \hat{D}\left[p^{\prime}, q^{\prime}\right]=\hat{\Delta}\left(p-p^{\prime}, q-q^{\prime}\right) \tag{26}
\end{equation*}
$$

The upshot is that by direct calculation equations (22) to (26) can be combined and simplified to give
$\left(\mu_{\sigma}^{(\lambda)}(p, q)\right)^{*} \psi_{\sigma}^{(\lambda)}(p, q)=\left(\frac{4}{1-\lambda^{2}}\right) \int \mathrm{d} \tau^{\prime}(|\psi\rangle\langle\mu|)_{\left(p^{\prime}, q^{\prime}\right)}(|\sigma\rangle\langle\sigma|)_{\left(\frac{2 p-(1+\lambda) p^{\prime}}{(1-\lambda)}, \frac{2 q-\left(11-\lambda q^{\prime}\right.}{(1+\lambda)}\right)}$.

It is easy to see from this result that

$$
\begin{equation*}
\int \mathrm{d} \tau\left(\mu_{\sigma}^{(\lambda)}(p, q)\right)^{*} \psi_{\sigma}^{(\lambda)}(p, q)=\langle\mu \mid \psi\rangle \tag{28}
\end{equation*}
$$

as it must [18].
From (27) we can find an analogous expression for the pair $\left(\widetilde{\psi}_{\sigma}^{(\lambda)}, \widetilde{\mu}_{\sigma}^{(\lambda)}\right)$. By equations (21), (10) and (20) it is

$$
\begin{align*}
\left(\tilde{\mu}_{\sigma}^{(\lambda)}(p, q)\right)^{*} \widetilde{\psi}_{\sigma}^{(\lambda)}(p, q)= & \operatorname{Tr}\left(|\psi\rangle\langle\mu| \hat{D}^{(\lambda)}[p, q]|\sigma\rangle\langle\sigma| \hat{D}^{(\lambda) \dagger}[p, q]\right) \\
= & \frac{1}{4} \int \mathrm{~d} \tau^{\prime}(|\psi\rangle\langle\mu|)_{\left(p^{\prime}, q^{\prime}\right)} \\
& \times\langle\sigma| \hat{\Pi} \hat{\Delta}^{(\lambda) \dagger}(p / 2, q / 2) \hat{\Delta}\left(p^{\prime}, q^{\prime}\right) \hat{\Delta}^{(\lambda)}(p / 2, q / 2) \hat{\Pi}|\sigma\rangle \\
= & \frac{1}{4} \int \mathrm{~d} \tau^{\prime}(|\psi\rangle\langle\mu|)_{\left(p^{\prime}, q^{\prime}\right)}\langle\sigma| \hat{\Delta}^{(\lambda) \dagger} \\
& \times(-p / 2,-q / 2) \hat{\Delta}\left(-p^{\prime},-q^{\prime}\right) \hat{\Delta}^{(\lambda)}(-p / 2,-q / 2)|\sigma\rangle \tag{29}
\end{align*}
$$

where I have recognized (using $\hat{\Pi}$ with the first of equations (6)) that

$$
\hat{\Pi} \hat{\Delta}^{(\lambda)}(p, q) \hat{\Pi}=\hat{\Delta}^{(\lambda)}(-p,-q) .
$$

Similarly (use an analysis based on (16))

$$
\begin{align*}
&\left(\mu_{\sigma}^{(\lambda)}(p, q)\right)^{*} \psi_{\sigma}^{(\lambda)}(p, q)=\int \mathrm{d} \tau^{\prime}(|\psi\rangle\langle\mu|)_{\left(p^{\prime}, q^{\prime}\right)} \\
& \times\langle\sigma| \hat{\Delta}^{(\lambda)}(p, q) \hat{\Delta}\left(p^{\prime}, q^{\prime}\right) \hat{\Delta}^{(\lambda) \dagger}(p, q)|\sigma\rangle \tag{30}
\end{align*}
$$

Since $\hat{\Delta}^{(\lambda) \dagger}(p, q)=\hat{\Delta}^{(-\lambda)}(p, q)$ it follows from (29) and (30) that multiplying by $1 / 4$ and making the substitutions $\left(p, q, p^{\prime}, q^{\prime}, \lambda\right) \rightarrow\left(-p / 2,-q / 2,-p^{\prime},-q^{\prime},-\lambda\right)$ in (27) gives
$\left(\tilde{\mu}_{\sigma}^{(\lambda)}(p, q)\right)^{*} \widetilde{\psi}_{\sigma}^{(\lambda)}(p, q)=\left(\frac{1}{1-\lambda^{2}}\right) \int \mathrm{d} \tau^{\prime}(|\psi\rangle\langle\mu|)_{\left(p^{\prime}, q^{\prime}\right)}(|\sigma\rangle\langle\sigma|)_{\left(\frac{(1-\lambda) p^{\prime}-p}{(1+\lambda)}, \frac{(1+\lambda) q^{\prime}-q}{(1-\lambda)}\right)}$.
This also obeys an equation like (28).
The second term in the integrand here is the Weyl transform of the pure state $|\sigma\rangle\langle\sigma|$, namely, from (9),

$$
(|\sigma\rangle\langle\sigma|)_{\left(\frac{(1-\lambda) p^{\prime}-p}{(1+\lambda)}, \frac{(1+\lambda) q^{\prime}-q}{(1-\lambda)}\right)}=\langle\sigma| \hat{\Delta}\left(\frac{(1-\lambda) p^{\prime}-p}{(1+\lambda)}, \frac{(1+\lambda) q^{\prime}-q}{(1-\lambda)}\right)|\sigma\rangle .
$$

This can be simplified using the displacement operator \hat{D} and the unitary dilation, or squeeze, operator ($[24,25])$

$$
\begin{equation*}
\hat{S}(\xi)=\mathrm{e}^{\mathrm{i} \frac{t}{2 \hbar}(\hat{p} \hat{q}+\hat{q} \hat{p})} \tag{32}
\end{equation*}
$$

which has the properties

$$
\begin{equation*}
\hat{S}^{\dagger}(\xi)=\hat{S}(-\xi) \quad \text { and } \quad \hat{S}^{\dagger}(\xi)(\hat{p}, \hat{q}) \hat{S}(\xi)=\left(\mathrm{e}^{\xi} \hat{p}, \mathrm{e}^{-\xi} \hat{q}\right) \tag{33}
\end{equation*}
$$

so that (using this with (3) and (6))

$$
\begin{equation*}
\hat{S}^{\dagger}(\xi) \hat{\Delta}(p, q) \hat{S}(\xi)=\hat{\Delta}\left(\mathrm{e}^{-\xi} p, \mathrm{e}^{\xi} q\right) \tag{34}
\end{equation*}
$$

Then

$$
\begin{align*}
(|\sigma\rangle\langle\sigma|)_{\left(\frac{(1-\lambda))^{\prime}-p}{(1+\lambda)}, \frac{(1+\lambda) q^{\prime}-q}{(1-\lambda)}\right)} & =\langle p, q, \lambda ; \sigma| \Delta\left(p^{\prime}, q^{\prime}\right)|p, q, \lambda ; \sigma\rangle \\
& =(|p, q, \lambda ; \sigma\rangle\langle p, q, \lambda ; \sigma|)_{\left(p^{\prime}, q^{\prime}\right)}, \tag{35}
\end{align*}
$$

where

$$
\begin{equation*}
|p, q, \lambda ; \sigma\rangle=\hat{D}\left[\frac{p}{1-\lambda}, \frac{q}{1+\lambda}\right] \hat{S}\left(\ln \frac{1+\lambda}{1-\lambda}\right)|\sigma\rangle \tag{36}
\end{equation*}
$$

is a displaced squeezed state $[14,24,25]$ generalized to an arbitrary fiducial state $|\sigma\rangle$. And so

$$
\begin{align*}
\left(\widetilde{\mu}_{\sigma}^{(\lambda)}(p, q)\right)^{*} \widetilde{\psi}_{\sigma}^{(\lambda)}(p, q) & =\left(\frac{1}{1-\lambda^{2}}\right) \int \mathrm{d} \tau^{\prime}(|\psi\rangle\langle\mu|)_{\left(p^{\prime}, q^{\prime}\right)}(|p, q, \lambda ; \sigma\rangle\langle p, q, \lambda ; \sigma|)_{\left(p^{\prime}, q^{\prime}\right)} \\
& =\left(\frac{1}{1-\lambda^{2}}\right)\langle p, q, \lambda ; \sigma \mid \psi\rangle\langle\mu \mid p, q, \lambda ; \sigma\rangle \tag{37}
\end{align*}
$$

By a slight rearrangement we can also write

$$
\begin{align*}
\left(\widetilde{\mu}_{\sigma}^{(\lambda)}(p, q)\right)^{*} & \widetilde{\psi}_{\sigma}^{(\lambda)}(p, q)=\left(\frac{1}{1-\lambda^{2}}\right) \\
& \quad \times \int \mathrm{d} \tau^{\prime}(|\psi\rangle\langle\mu|)_{\left(p^{\prime}, q^{\prime}\right)}(|\lambda p,-\lambda q, \lambda ; \sigma\rangle\langle\lambda p,-\lambda q, \lambda ; \sigma|)_{\left(p^{\prime}-p, q^{\prime}-q\right)} \tag{38}
\end{align*}
$$

Setting $|\mu\rangle=|\psi\rangle$, generalizing from $|\psi\rangle\langle\psi|$ to the density matrix $\hat{\rho}=\sum w_{\psi}|\psi\rangle\langle\psi|$, and dividing by h gives the 'diagonal' component of this sesquilinear form, the generalized Q-function. Non-negative by construction, from (37) and (38) it is

$$
\begin{align*}
\widetilde{Q}_{\sigma}^{(\lambda)}(p, q ; \rho) & \equiv \frac{1}{h} \sum_{\psi} w_{\psi}\left|\widetilde{\psi}_{\sigma}^{(\lambda)}(p, q)\right|^{2} \\
& =\frac{1}{h}\left(\frac{1}{1-\lambda^{2}}\right)\langle p, q, \lambda ; \sigma| \hat{\rho}|p, q, \lambda ; \sigma\rangle \\
& =\left(\frac{1}{1-\lambda^{2}}\right) \int \mathrm{d} p^{\prime} \mathrm{d} q^{\prime} \rho\left(p^{\prime}, q^{\prime}\right) \rho_{\sigma}^{(\lambda)}\left(p ; p^{\prime}-p, q^{\prime}-q\right) \tag{39}
\end{align*}
$$

where

$$
\begin{equation*}
\rho(p, q)=\frac{1}{h}(\hat{\rho})_{(p, q)}=\frac{1}{h} \operatorname{Tr}(\hat{\rho} \hat{\Delta}(p, q)) \tag{40}
\end{equation*}
$$

is the Wigner function for the state $\hat{\rho},|p, q, \lambda ; \sigma\rangle$ is given by (36), and $\rho_{\sigma}^{(\lambda)}$ is the Wigner function corresponding to the p and q dependent squeezed state $|\lambda p,-\lambda q, \lambda ; \sigma\rangle$:
$\rho_{\sigma}^{(\lambda)}\left(p ; p^{\prime}-p, q^{\prime}-q\right)=\frac{1}{h}(|\lambda p,-\lambda q, \lambda ; \sigma\rangle\langle\lambda p,-\lambda q, \lambda ; \sigma|)_{\left(p^{\prime}-p, q^{\prime}-q\right)}$.
The multiplier $1 / h$ is chosen by convention so that $\widetilde{Q}_{\sigma}^{(\lambda)}\left(p^{\prime}, q^{\prime} ; \rho\right), \rho\left(p^{\prime}, q^{\prime}\right)$ and $\rho_{\sigma}^{(\lambda)}\left(p ; p^{\prime}-\right.$ $p, q^{\prime}-q$) are all normalized with respect to the integral $\int \mathrm{d} p^{\prime} \mathrm{d} q^{\prime}$.

4. Discussion

When there is no squeezing of the fiducial state then $\lambda \rightarrow 0,|\lambda p,-\lambda q, \lambda ; \sigma\rangle \rightarrow|\sigma\rangle$, and $|p, q, \lambda ; \sigma\rangle \rightarrow|p, q ; \sigma\rangle$ (defined in equation (2)). In that case

$$
\begin{align*}
\widetilde{Q}_{\sigma}^{(0)}(p, q ; \rho) & \equiv \widetilde{Q}_{\sigma}(p, q ; \rho)=\frac{1}{h}\langle p, q ; \sigma| \hat{\rho}|p, q ; \sigma\rangle \\
& =\int \mathrm{d} p^{\prime} \mathrm{d} q^{\prime} \rho\left(p^{\prime}, q^{\prime}\right) \rho_{\sigma}\left(p^{\prime}-p, q^{\prime}-q\right) \tag{42}
\end{align*}
$$

where

$$
\rho(p, q)=\frac{1}{h} \operatorname{Tr}(\hat{\rho} \Delta(p, q))
$$

and

$$
\rho_{\sigma}(p, q)=\frac{1}{h} \operatorname{Tr}(|\sigma\rangle\langle\sigma| \Delta(p, q))
$$

are the Wigner functions corresponding to the states $\hat{\rho}$ and $|\sigma\rangle\langle\sigma|$.
When $|\sigma\rangle$ is the vacuum state, $\widetilde{Q}_{\sigma}(p, q ; \sigma)$ is the well-known Husimi or Q-function and the content of equations (42) is well known, [9, 11, 20, 22]. Generalized to an arbitrary fiducial state $|\sigma\rangle$ the first of equations (42) says that the Q -function is the expectation of state $\hat{\rho}$ with respect to the coherent state of equation (2) while the second expresses it as the Wigner function for $\hat{\rho}$ smeared with respect to the Wigner function for $|\sigma\rangle\langle\sigma|$. The two Weyl transformed functions which are convoluted in equation (42) each separately corresponds to the scheme of equation (13) with $f(\xi, \eta)=1$, and $\widetilde{Q}_{\sigma}(p, q ; \sigma)$ itself is also a member of that class of correspondences. This follows the convolution theorem. For instance, we can define the Fourier component, $[\hat{A}]_{(p, q)}$, of the Weyl transform $(\hat{A})_{(p, q)}$ of an operator \hat{A}, as

$$
[\hat{A}]_{(p, q)}=\int \frac{\mathrm{d} p^{\prime} \mathrm{d} q^{\prime}}{h} \mathrm{e}^{\frac{\mathrm{i}}{\hbar}\left(p^{\prime} q+q^{\prime} p\right)}(\hat{A})_{\left(p^{\prime}, q^{\prime}\right)}
$$

and using this in equation (42) gives

$$
\begin{equation*}
\widetilde{Q}_{\sigma}(p, q ; \sigma)=f^{-1}\left(-\mathrm{i} \partial_{q},-\mathrm{i} \partial_{p}\right) \rho\left(p^{\prime}, q^{\prime}\right) \tag{43}
\end{equation*}
$$

where

$$
f^{-1}(\xi, \eta)=[|\sigma\rangle\langle\sigma|]_{(\hbar \xi, \hbar \eta)} .
$$

The customary choice for the fiducial state is the vacuum [9,11]. In particular, for a harmonic oscillator in the ground state $|\sigma\rangle=|0\rangle$, where

$$
\langle x \mid 0\rangle=\frac{\alpha^{1 / 2}}{\pi^{1 / 4}} \mathrm{e}^{-\frac{1}{2} \alpha^{2} x^{2}}, \quad \text { and } \quad \alpha^{2}=\frac{m \omega}{\hbar}
$$

which gives for the Weyl transform of $|0\rangle\langle 0|$ and its Fourier component

$$
(|0\rangle\langle 0|)_{(p, q)}=2 \mathrm{e}^{-\alpha^{2} q^{2}} \mathrm{e}^{-\frac{p^{2}}{\alpha^{2} \hbar^{2}}} \quad \text { and } \quad[|0\rangle\langle 0|]_{(\hbar \xi, \hbar \eta)}=\mathrm{e}^{-\frac{\xi^{2}}{4 \alpha^{2}}} \mathrm{e}^{-\frac{\alpha^{2} \hbar^{2} \eta^{2}}{4}}
$$

Thus, even when there is no squeezing (i.e. $\lambda=0$) what was a Weyl association $f=1$ (equation (12)) for the phase space wavefunction $|\psi\rangle\left\langle h_{0}\right|$ becomes an association

$$
\begin{equation*}
f(\xi, \eta)=\mathrm{e}^{\frac{\xi^{2}}{4 \alpha^{2}}} \mathrm{e}^{\frac{\alpha^{2} \hbar^{2} \eta^{2}}{4}} \tag{44}
\end{equation*}
$$

for the Q-function, equation (43). Although the function $f(\xi, \eta)$ of equation (44) does not have the properties $f(0, \eta)=1=f(\xi, 0)$ the distribution $\widetilde{Q}_{\sigma}(p, q ; \sigma)$ which it generates is non-negative. It is a positive operator-valued measure (POM) [26]. This association is a special case of the s-family of orderings considered by Cahill and Glauber [21, 22], which in the notation of this paper can be written

$$
f^{(s)}(\xi, \eta)=\mathrm{e}^{s \frac{\xi^{2}}{4 \alpha^{2}}} \mathrm{e}^{s^{2} n^{2} \eta^{2}} 4 .
$$

For $\lambda \neq 0$ the functions $\widetilde{Q}_{\sigma}^{(\lambda)}(p, q ; \rho)$, equation (39), are also a POMs, but owing to the extra p-dependence of the smoothing function they do not have corresponding functions $f(\xi, \eta)$. The form of equation (39) shows that $\widetilde{Q}_{\sigma}^{(\lambda)}$ is proportional to the average of $\hat{\rho}$ with respect to the state $|p, q, \lambda ; \sigma\rangle$, equation (36). In other words, $\widetilde{Q}_{\sigma}^{(\lambda)}$ is proportional to the probability of finding the system in the state $|p, q, \lambda ; \sigma\rangle$ when it has been prepared in the state $\hat{\rho}$. The state $|p, q, \lambda ; \sigma\rangle$ is a minimum uncertainty squeezed state when the fiducial state $|\sigma\rangle$
is the vacuum state. To see this using (25), (33) and (36) it is easy to show that, for any choice of $|\sigma\rangle$,

$$
\begin{aligned}
& \langle p, q, \lambda ; \sigma| \hat{p}|p, q, \lambda ; \sigma\rangle=\frac{p}{1-\lambda}+\left(\frac{1+\lambda}{1-\lambda}\right)\langle\sigma| \hat{p}|\sigma\rangle, \\
& \langle p, q, \lambda ; \sigma| \hat{q}|p, q, \lambda ; \sigma\rangle=\frac{q}{1+\lambda}+\left(\frac{1-\lambda}{1+\lambda}\right)\langle\sigma| \hat{q}|\sigma\rangle,
\end{aligned}
$$

and that for momentum and position the standard deviations for this state are

$$
\Sigma_{\sigma}^{(\lambda)}(p)=\left|\frac{1+\lambda}{1-\lambda}\right| \Sigma_{\sigma}(p) \quad \text { and } \quad \Sigma_{\sigma}^{(\lambda)}(q)=\left|\frac{1-\lambda}{1+\lambda}\right| \Sigma_{\sigma}(q)
$$

where $\Sigma_{\sigma}(p)$ and $\Sigma_{\sigma}(q)$ are the corresponding standard deviations for state $|\sigma\rangle$. So, whatever the degree of squeezing, $\Sigma_{\sigma}^{(\lambda)}(p) \Sigma_{\sigma}^{(\lambda)}(q)=\Sigma_{\sigma}(p) \Sigma_{\sigma}(q)$, and for the vacuum state this product is the minimum value $\hbar / 2$.

We could equally choose to work with $\psi_{\sigma}^{(\lambda)}$ instead of $\widetilde{\psi}_{\sigma}^{(\lambda)}$. For instance

$$
\begin{equation*}
Q_{\sigma}^{(\lambda)}(p, q ; \rho) \equiv \frac{1}{h} \sum_{\psi} w_{\psi}\left|\psi_{\sigma}^{(\lambda)}(p, q)\right|^{2} \tag{45}
\end{equation*}
$$

is directly related to $\widetilde{Q}_{\sigma}^{(\lambda)}(p, q ; \rho)$, for from equations (16), (17), (20) and (21) we have

$$
\begin{equation*}
\widetilde{\psi}_{\sigma}^{(\lambda)}(p, q)=\frac{1}{2}\langle\sigma| \hat{\Pi} \hat{\Delta}^{(\lambda) \dagger}(p / 2, q / 2)|\psi\rangle=\frac{1}{2} \psi_{\sigma_{r}}^{(-\lambda)}(p / 2, q / 2), \tag{46}
\end{equation*}
$$

so that

$$
\begin{equation*}
\psi_{\sigma}^{(\lambda)}(p, q)=2 \widetilde{\psi}_{\sigma_{r}}^{(-\lambda)}(2 p, 2 q) \tag{47}
\end{equation*}
$$

where $\left|\sigma_{r}\right\rangle=\hat{\Pi}|\sigma\rangle$ is a reflected fiducial state.
The time dependence of $\widetilde{Q}_{\sigma}^{(\lambda)}(p, q ; \rho)$-or of $Q_{\sigma}^{(\lambda)}(p, q ; \rho)$ —enters through the time dependence of $\hat{\rho}$, for instance via its Weyl transform $h \times \rho\left(p^{\prime}, q^{\prime}\right)$ in the third of equations (39). The equation of motion of Wigner functions is well known [5] and can be transferred to $\widetilde{Q}_{\sigma}^{(\lambda)}(p, q ; \rho)$ itself by partial integration in equation (39). Another way would be to find the time dependence of $\widetilde{\psi}_{\sigma}^{(\lambda)}(p, q)$ itself which enters through the time dependence of $|\psi\rangle$. In [18] it was chosen to study the time variation of $\psi_{\sigma}^{(\lambda)}(p, q)$-as it is itself a Weyl transform and, from that standpoint, basic-when driven by a Hamiltonian $\hat{H}=\hat{p}^{2} / 2 m+V(\hat{q})$. According to equations (46) and (47), this knowledge transfers to $\widetilde{\psi}_{\sigma}^{(\lambda)}(p, q)$.

References

[1] Weyl H 1927 Z. Phys. 461
[2] Weyl H 1930 The Theory of Groups and Quantum Mechanics (New York: Dover)
[3] Wigner E P 1932 Phys. Rev. 40749
[4] Hudson R L 1974 Rep. Math. Phys. 6249
[5] de Groot S R and Suttorp L G 1972 Foundations of Electrodynamics (Amsterdam: North-Holland)
[6] Soto F and Claverie P 1983 J. Math. Phys. 2497
[7] Gross D 2006 Preprint quant-ph/0602001
[8] Cohen L 1966 J. Math. Phys. 7781
[9] Hai-Woong Lee 1995 Phys. Rep. 259147
[10] Cartwright N D 1976 Physica A 83210
[11] Husimi K 1940 Prog. Phys. Math. Soc. Jap. 22264
[12] O'Connel R F and Wigner E P 1981 Phys. Lett. A 85121
[13] Halliwell J J 1992 Phys. Rev. D 461610
[14] Klauder J R and Skagerstam B 1985 Coherent States: Applications in Physics and Mathematical Physics (Singapore: World Scientific)
[15] Torres-Vega G and Fredrick J H 1993 J. Chem. Phys. 983103
[16] Møller K B, Jørgensen T G and Torres-Vega Go 1997 J. Chem. Phys. 1067228
[17] Harriman J E 1994 J. Chem. Phys. 1003651
[18] Smith T B 2006 J. Phys. A: Math. Gen. 391469
[19] Bopp F 1956 Ann. Inst. Henri Poicaré 1581
[20] Mizrahi S S 1983 Physic A 127241
[21] Cahill K E and Glauber R J 1969 Phys. Rev. 1771857
[22] Cahill K E and Glauber R J 1969 Phys. Rev. 1771882
[23] Royer A 1977 Phys. Rev. A 15449
[24] Leonhardt U 1997 Measuring the Quantum State of Light (Cambridge: Cambridge University Press)
[25] Loudon R and Knight P L 1987 J. Mod. Opt. 34709
[26] Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic)

