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Abstract

The modulus squared of a class of wavefunctions defined on phase space is
used to define a generalized family of Q or Husimi functions. A parameter A
specifies orderings in a mapping from the operator ) (o | to the corresponding
phase space wavefunction, where o is a given fiducial vector. The choice
A = 0 specifies the Weyl mapping and the Q-function so obtained is the usual
one when |o) is the vacuum state. More generally, any choice of A in the
range (—1, 1) corresponds to orderings varying between standard and anti-
standard. For all such orderings the generalized Q-functions are non-negative
by construction. They are shown to be proportional to the expectation of the
system state p with respect to a generalized displaced squeezed state which
depends on A and position (p, ¢) in phase space. Thus, when a system has
been prepared in the state g, a generalized Q-function is proportional to the
probability of finding it in the generalized squeezed state. Any such Q-function
can also be written as the smoothing of the Wigner function for the system
state p by convolution with the Wigner function for the generalized squeezed
state.

PACS numbers: 03.65.Ca, 03.65.Ta

1. Introduction

The Weyl transform [1, 2] associates operators with functions on phase space. In particular, the
Wigner function p(p, q) [3] is the Weyl transform of the density matrix divided by & = 27h.
Although p(p, g) does have many features of a classical distribution it can take on negative
values, with bounds [5] given by 2/h > p(p,q) > —2/h. Indeed Hudson [4] showed that
the only pure states v (x) for which the Wigner function is non-negative are Gaussian in x.
This carries over to any number of dimensions [6], and also, for odd dimensions at least, to
the formulation of discrete Wigner functions [7].

The Weyl correspondence between operators and functions on phase space—of which the
Wigner function is an example—is a special case of the class of the correspondences given
by Cohen [8]. In particular, if any Wigner function is convoluted, or smeared, by integration
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with respect to the Wigner function of the vacuum state, itself a gaussian function on phase
space, then the smoothed function, called the Q-function (or Husimi function), is non-negative
and corresponds to an ordering in Cohen’s class different from that of Wigner and Weyl [9].
More generally, if any Wigner function is convoluted with respect to a Gaussian function
which is itself the Wigner function of a pure coherent state, then the result is non-negative
[6,9-13].

The Wigner function is bilinear with respect to wavefunctions. For instance if the Weyl
transform of the pure state [v) (Y| is written (|Y)(¥|)(p,q)» then the corresponding Wigner
function [3, 5] is

1
Pp.q) = (VYWD

1 [ i
:E/@Mexp(%px)lﬁ(q—%)1/f*<61+§>, (1)

so the smeared Wigner functions are also bilinear with respect to the wavefunctions.
It is also possible in a sense to smear the states themselves, for instance by projecting
them onto a class of generalized displaced coherent states, defined [14] by

Ip.q;0) = DIp. qllo), 2)
where |o) is any reference ‘fiducial’ state, and
Dip. q] = errizep (3)

is Weyl’s displacement operator. Then, corresponding to any wavefunction |y) one can define
a ‘smoothed’” wavefunction on phase space by projecting it onto the coherent state:

Vo (p,q) = (o|D[p, qlly). 4)

These functions and their time dependence when v is driven by the Hamiltonian p?/2m +
V (¢) have been studied for some choices of |o) by Torres-Vega et al, Harriman, and others
[15-17].

In this paper I generalize w(, (p, g) to a phase space wavefunction 1//0‘) (p, ) by relating
it to a class of orderings labelled by a parameter A € (—1, +1), where W(O) (p,q) = wg (p,q),
equation (4). A given value of A specifies an association between functions on phase

space and operators, A(p, q) PON A, where . = —1 gives the standard ordering (e.g.
p'q" <— §"p"), L = +1 gives the anti-standard rule (e.g. p"g™ «— p"§g™), and A = 0
gives the symmetric or Weyl association, of which (1) is an example with p(p, g) <— p/h.
The time dependence, effectively, of w(*) (p, g) has been studied in [18].

w(” (p, q) relates to the A-orderings of the operator | ) (o |, which is linear in the states
|vr) (the reference or fiducial state is held fixed), but the density matrix g = |¢)(Y¥]| is
bilinear, so a chosen ordering for |1/) (o | will not be expected to apply to the density matrix,
indeed it may not even be of the A-class. The generalized Q-function for a pure state |A),
defined as |$ff) (p,q) |2 / h, is normalized with respect to the integral [ dpdg over all of phase
space. The main results of this paper are that the generalized Q-function corresponding to any
state p is, first, non-negative, second, proportional to the expectation of p with respect to a
certain generalized displaced squeezed state which depends upon o, A and (p, g) and, third,
proportional to the convolution of the Wigner functions for p with the Wigner function for
that squeezed state.

The field of quantum mechanics in phase space is a large one, perhaps starting with the
analysis of Weyl [1, 2] and of Wigner [3]. In the context of this paper Bopp [19] in 1956
considered classical-like implications of that Q-function corresponding to the Weyl ordering
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(A = 0) and with fiducial state chosen (as is usually the case) to be the vacuum state |0) = |hy),
namely (h0|ﬁ[p, q]ii)(t)f)[p, qllho). That this can be related to the modulus squared of a
wavefunction, here 1;2(3) (p, q) was pointed out by Mizrahi [20] who also studied some of its
properties. On a different tack, Cahill and Glauber [21, 22] have studied at length a family

of orderings (the s-family) A PIUN A(p, q), centred around the annihilation and creation
operators & and &', where (in my notation) & = % (ac} + i%)—where « is a real parameter—
so that [a,a'] = 1. Defining the complex numbers A = \/Li(aq + i%), when s = —1
their mapping corresponds to the association (antinormal ordering) a"a™ <— A™A**, when
s = 1 the association is a™a" <— A*" A" (normal ordering), and when s = 0 the ordering
is that of Weyl. Thus the A and s mappings complement each other, and overlap at A = 0 = s.
Among their many interesting results Cahill and Glauber define what is effectively a phase
space wavefunction corresponding to |y)(hg| for their s-ordering, but they do not relate its
modulus squared to any s-ordered Q-function. They do, however, express the usual Q-function,
(h0|f)[p, q]Tb(t)D[p, qllho), as a smoothed Wigner function.

In this note I start with the modulus squared of wavefunctions on phase space, of which
equation (4) is a special case, and show that it can correspond to smeared Wigner functions,
where the smearing functions themselves are Wigner functions of generalized displaced
squeezed states. Section 2 discusses wavefunctions on phase space and generalizes them
to the A-class of orderings. Section 3 develops expressions for the Q-functions based on these
wavefunctions. Section 4 discusses some properties of these Q-functions.

2. Wavefunctions on phase space

It is often convenient to work with the Fourier transform of 1;(, (p, q), defined by

o dp/dq/ i / / N / /
%(p,q)zf A eXp[g(pq—qp)}%(p,q)

=Tr(|y) (o |A(p, ). S
where [5]

/

A _ oodp,dq i / / 2 i
(p,q) = exp —F—l(pq—qp) D[p'.q']

o h
+x X
1T5\17 3

o i
= dx exp (—px)
[ e

The wavefunctions ¥, (p, q) were defined in [ 18] where many of their properties are discussed.
In particular, they are the Weyl transform of the operators |¢) (o|. Indeed, the Weyl transform,
which I shall write (A)(, ) or A(, 4), and its associated operator A are related [5] by

. (6)

A *© dpdg A
A =/ p Ap.pAp, q9), (N
—00
which, by virtue of the relation
Te(A(p. AP, 4)) = hé(p — p)8(a — 4", ®)
can be inverted to give
A.g) = Tr(AA(p, 9)). )

So Yo (p, q) is the Weyl transform (|) (o'|)(p.4), and 17/1,(1), q) is its Fourier transform.



13750 T B Smith

Another property of the Weyl transform which we need [5] is
A * dpdg
Tr(AB) = TA(”'Q)B(”’Q)' (10)
—00
Note from (6) that Tr(A(p, q)) = 1 so, from (9), (1), ) = 1, and (letting B = 1 in (10))

. [®dpd
TrA:/ P2 A (11)
o h

The essential characteristic of the Weyl correspondence follows from equations (3) and
(9) together with the first of (6). It is

(ei($@+ﬁi’))(p,q) — ela+np) (12)

Other orderings defined by Cohen [8] can be specified by the generalization of (12) to the form

A 1 . .
(el($q+np)).(fp’q) — o eiEq+ip) _ fﬁl(—iaq, —id,) ei6a+mp) (13)

where f~! means 1/f and the choice f = 1 gives the Wigner—Weyl ordering. Note that when
f(@O,n) =1 = f(,QO0) then the Weyl transform of a function of § (or p) only is the same
function of ¢ (or p) only. If we particularize to the class of orderings defined by the function

h
fE i 2) = e, (14)
where A is a real parameter lying in the interval [—1, +1], then
(ei(ééﬂvi)))gl) ,= e~ i3AEN GiEq+np) (15)
p.q :
Use of the Baker—Campbell-Hausdorff theorem leads to the equivalent expressions
i£q ginpy() =B 0G+DEN GiEq+p)
G e
and
inp o4y _ =B G=DEn GiEgnp)
(e"e )(p.,q) =€ ?2 € .
The choice A = —1 in the first of these gives the ‘standard’ or ‘p’ association (p first, then §),
i£q Linp\(=D __ i(¢qg+np)
@™ pg =¢
and the choice A = 1 in the second gives the anti-standard association (g first, then p),
(e? eig‘?)EJrl)) — ei€a+p)
P ’

while the Wigner—Weyl ordering, A = 0, puts p and ¢ on equal footing, equation (12).
The generalization of ¥, (p, q) to the family of orderings defined by equations (14) and
(15) is given [18] by

v P (p, q) = Te([Y) (0| AP (p, ) = (0| AM (p, @) |¥), (16)
where
AN (p,q) = PUA(p, ). (17)

Equations (16) and (17) generalize the phase space wavefunction ¥, (p, ¢), the Weyl transform
of |{)(o]|, to the class of orderings defined by (14).
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3. Q-functions

The functions ¥, (p, ¢) are normalized—this follows from the second of equations (5) and
(10)—and so too are the ¥, (p, g) by dint of the Fourier relation, equation (5). Further, by
taking matrix elements of the quantities in equations (3) and (7) one finds [23] that

A(p.q) =2D12p.2qIf1  or  Dlp.ql=;A(p/2.¢/01,  (18)
where IT is the parity operator, i.e.

1‘1:/00 dx|x)(—x]. (19)

o]

From these equations we can define a generalized displacement operator as
DP[p,ql = A% (p/2,q/D11 (20)

with corresponding generalized ‘coherent state’ D™ [p, ¢]|o’) and phase space wavefunction
(partner and equivalent to ¥*) (p, ¢)) given by

VP (p.q) = (0|DP[p, q11v). 1)
Consider the product
(1 (P ) v (b @) = / de’ / dr’ ei5ird e inr'd

X e%(p’q—q’p)e—%(p”q—q”p) 1/70 (p/, q/)(ﬁa (p”, q”))*, (22)

where I have used (5), (16) and (17) and [ dt’ stands for ffooo dp’'dq’/ h, etc. By equations (4),
(9) and (10) we can write

Vo (P, gV T (", g = / dr (YYD gy (D", )01 DI (P, @) (g (23)

which is an integral over the product of two Weyl transformed operators. In particular, by
definition (9) the second term is

(D", q"(o) oI D'(P', d )N ip.gy = (01D (P, ¢)YA(p, ) DD, q")lo). 24)

To simplify this quantity one can express A here in terms of D (equation (6)) and then
simplify the resulting triple product of displacement operators by means of these useful
algebraic properties [14]:

D'[p,q] = D[-p, —q].
D'lp,q)(p,4)DIp,ql = (p+ p,q +q), 25)
D(ps, ¢21D[p1, q1] = e WP~ 2PO D p) + py, gy + ga).

Utilizing the action of the unitary operator D on A itself can also help. For instance, using
the second of (25) with the first of equations (6) one finds

D'lp',d1A(p,¢)DIp,d1=Ap - p'.q—q). (26)

The upshot is that by direct calculation equations (22) to (26) can be combined and simplified
to give

(1 . 0)) v (p.9) =< ) / Az’ (Y ) (1D r.an (0O D s 2ne ) 27)

1— A2
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It is easy to see from this result that

/ dr(nd (P, ) v (p. @) = (uly), (28)

as it must [18]. _
From (27) we can find an analogous expression for the pair (¥, i"). By equations (21),
(10) and (20) it is

(ZP (p, ) TP (p, ) = Te([Y) (DD p, qllo) (a1 DD [p, q1)

1 /
- f v’ (1) (D g

x (o|TTIAM(p/2,q/2)A', ¢YAP (p/2, g/2)1|0)

1 ~
=7 f Ao’ (1Y) D) (g (o | AP

x (=p/2, =q/DA(=p', =¢) AP (=p/2, —q/2)|0), (29)
where I have recognized (using [T with the first of equations (6)) that
A (p, )11 = AW (—p, —q).

Similarly (use an analysis based on (16))

(1 (p. ) VP (p. q) = /dt/(ldf)(ll«D(p’qq/)

x(o|AP (p, A, ¢YAP (p, @)lo). (30)

Since AMT(p, q) = AP (p, q) it follows from (29) and (30) that multiplying by 1/4 and
making the substitutions (p, g, p’, ¢', A) — (—p/2, —q/2, —p’, —q’, —X) in (27) gives

~() * 700 _ 1 dr’ 31
(EP ) v (p.g) = T2 T (|w><l’b|)(p/,q’)(|0)(UD(%’%y (31

This also obeys an equation like (28).
The second term in the integrand here is the Weyl transform of the pure state |o) (o],
namely, from (9),

A=0p' —p (1+M)q' —q
lo)

0P =p A+’ —q\ = A ’
(o) oD s amya) = (o] ( (1+21) 1=2)

This can be simplified using the displacement operator D and the unitary dilation, or squeeze,
operator ([24, 25])

§(&) = eiz (Pa+ap) (32)
which has the properties

§1(&) = 8(=§) and  S'E)(D,SE) = " p.etY), (33)
so that (using this with (3) and (6))

S'E AP, 9)8E) = Ae ™ p,efq). (34)

Then
(|G)(O'D((l—()]«zrl"’)—ﬂ’(1*('/;\11‘/)—11) = <p7 q, )"; U|A(p/5 q/)lpv q, )“; U)
= (|p7 f]v)%G)(P, q, )‘-;U|)(p’.q’)s (35)
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where

pogioy =Dl —— 4 |s(1n 1) (36)
,qd, A, 0) = 5 n o
P-4 T2 1+ 1—a

is a displaced squeezed state [14, 24, 25] generalized to an arbitrary fiducial state |o'). And so

1
(EP (0. ) TP (p. q) = ( ,\2> f A (1Y) (D g (12 4. A 0) (P . 23 0D g

1
:<1_)Lz)@vqsMUW)(MIp,q,A;o). (37)
By a slight rearrangement we can also write

) 700 1 )
(EP (p, ) VP (p, q) = <1_)L2

x / A (W) (D) oy (AP —Aq 3 0) (hps =2 2 S Dyep—are (38)

Setting |u) = [|¢), generalizing from |/)(y| to the density matrix p = Y wy | ){(¥],
and dividing by /4 gives the ‘diagonal’ component of this sesquilinear form, the generalized
Q-function. Non-negative by construction, from (37) and (38) it is

~ 1 ~
09 (p.qip) = Yy wy|§ . )f
1

1 1 A

1 / !
= (1—x2)fdp dg'p(p'sa"e (P p' — p.d’ — @), (39)

where
1 1 R
p(p.q) = —(/3)<p,q> = —Tr(ﬁA(p, q)) (40)

is the Wigner function for the state g, |p, ¢, A; o) is given by (36), and p") is the Wigner
function corresponding to the p and ¢ dependent squeezed state |Ap, —Ag, A; 0):

1
o (pip —p.qd —q) = (2P, =24, % 0 (3P, =24, X O D pg—g)- (41)

The multlpher 1/ h is chosen by convention so that 0% (p', ¢'; p), p(p'. ¢') and p (p: p’ —
p.q' — q) are all normalized with respect to the integral [ dp’dq’.

4. Discussion

When there is no squeezing of the fiducial state then A — 0, |Ap, —Ag, A; 0) — |o), and
|p,q,A; 0) = |p, q; o) (defined in equation (2)). In that case

- 1
00 (p,q:p) = 0s(p,q; p) = 2 (p.ai01blp.q: )
=/dp’dq’p(p’,q’)pa(p’—p, q —q), 42)
where

1
p(p.q) = ZTr(ﬁA(p, q))
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and

1
po(p.q) = 3 Tr(lo) o] A(p. 9))

are the Wigner functions corresponding to the states g and |o) (o |.

When |o) is the vacuum state, é(, (p, q; o) is the well-known Husimi or Q-function and
the content of equations (42) is well known, [9, 11, 20, 22]. Generalized to an arbitrary
fiducial state |o) the first of equations (42) says that the Q-function is the expectation of
state p with respect to the coherent state of equation (2) while the second expresses it as the
Wigner function for p smeared with respect to the Wigner function for |o) (o |. The two Weyl
transformed functions which are convoluted in equation (42) each separately corresponds to
the scheme of equation (13) with f (£, n) = 1, and Q, (p, q; o) itself is also a member of that
class of correspondences. This follows the convolution theorem. For instance, we can define
the Fourier component, [A](,. 4, of the Weyl transform (A),, , of an operator A, as

(Al = / @ e PP (A) (),
and using this in equation (42) gives

00 (p,q:0) = [~ (=idy, =i8,)p(p', ), 43)
where

Y& =o) o Nnenm-
The customary choice for the fiducial state is the vacuum [9, 11]. In particular, for a harmonic
oscillator in the ground state |o) = |0), where
Oll/2 _lg2y2 2
(x|0)=me EA and o= —,
which gives for the Weyl transform of |0) (0| and its Fourier component

20 _ 0 _e
(|O)(O|)(pq) = 26_0”1126 "‘ghz and [|0><0|](7’l$,7m) = 4?e 4

Thus, even when there is no squeezing (i.e. A = 0) what was a Weyl association f = 1
(equation (12)) for the phase space wavefunction |v)(h(| becomes an association

o2n2n?

FE ) =eire™ (44)

for the O-function, equation (43). Although the function f (&, n) of equation (44) does not
have the properties f(0,7) = 1 = f(&,0) the distribution ég (p, q; o) which it generates
is non-negative. It is a positive operator-valued measure (POM) [26]. This association is a
special case of the s-family of orderings considered by Cahill and Glauber [21, 22], which in
the notation of this paper can be written

2,2

' £ o2y
fOE ) =ewre

For A # 0 the functions Q% (p, ¢; p), equation (39), are also a POMs, but owing to

the extra p-dependence of the smoothing function they do not have corresponding functions
f (&, n). The form of equation (39) shows that Q(f) is proportional to the average of p with
respect to the state |p, g, A; o), equation (36). In other words, ég\) is proportional to the
probability of finding the system in the state |p, g, A; o) when it has been prepared in the state
p. The state |p, g, A; o) is a minimum uncertainty squeezed state when the fiducial state |o)
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is the vacuum state. To see this using (25), (33) and (36) it is easy to show that, for any choice
of |o),

( )x()|A| /\ O)—_" 1 <O|A| >
s g A y gy AS a),

. q .
s g, A s g A 0) = ——+ | —— ,
(p.q. 7 0l4lp.q, A;0) T <1+A>(olqlo)

and that for momentum and position the standard deviations for this state are

1—A 1+A

where X, (p) and X, (¢) are the corresponding standard deviations for state |o'). So, whatever
the degree of squeezing, T (p)EZM(q) = Z,(p)Es(q), and for the vacuum state this
product is the minimum value /1 /2.

We could equally choose to work with ®) instead of 1. For instance

=M (p) = % (p) and 2P (q) = %5 (q),

0P (p.q: p) = %Zwuwé”(p,qnz (45)
14
is directly related to Q%) (p, g p), for from equations (16), (17), (20) and (21) we have
VPP, ) = 30 IIAN (p/2,q/D)1¥) = 3957 (p/2,4/2). (46)
so that
v (p @) =295 2p, 29), (47)

where |o,) = I1|o) is a reflected fiducial state.

The time dependence of Q% (p, q; p)—or of Q% (p, q; p)—enters through the time
dependence of g, for instance via its Weyl transform £ x p(p’, ¢’) in the third of equations (39).
The equation of motion of Wigner functions is well known [5] and can be transferred to
éff)( D, q; p) itself by partial integration in equation (39). Another way would be to find the
time dependence of 1%,*) (p, q) itself which enters through the time dependence of |i). In [18]
it was chosen to study the time variation of ¥/*)(p, g)—as it is itself a Weyl transform and,
from that standpoint, basic—when driven by a Hamiltonian A = p?/2m + V(§). According
to equations (46) and (47), this knowledge transfers to ¥ %) (p, q).
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