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Abstract
The modulus squared of a class of wavefunctions defined on phase space is
used to define a generalized family of Q or Husimi functions. A parameter λ

specifies orderings in a mapping from the operator |ψ〉〈σ | to the corresponding
phase space wavefunction, where σ is a given fiducial vector. The choice
λ = 0 specifies the Weyl mapping and the Q-function so obtained is the usual
one when |σ 〉 is the vacuum state. More generally, any choice of λ in the
range (−1, 1) corresponds to orderings varying between standard and anti-
standard. For all such orderings the generalized Q-functions are non-negative
by construction. They are shown to be proportional to the expectation of the
system state ρ̂ with respect to a generalized displaced squeezed state which
depends on λ and position (p, q) in phase space. Thus, when a system has
been prepared in the state ρ̂, a generalized Q-function is proportional to the
probability of finding it in the generalized squeezed state. Any such Q-function
can also be written as the smoothing of the Wigner function for the system
state ρ̂ by convolution with the Wigner function for the generalized squeezed
state.

PACS numbers: 03.65.Ca, 03.65.Ta

1. Introduction

The Weyl transform [1, 2] associates operators with functions on phase space. In particular, the
Wigner function ρ(p, q) [3] is the Weyl transform of the density matrix divided by h = 2πh̄.
Although ρ(p, q) does have many features of a classical distribution it can take on negative
values, with bounds [5] given by 2/h � ρ(p, q) � −2/h. Indeed Hudson [4] showed that
the only pure states ψ(x) for which the Wigner function is non-negative are Gaussian in x.
This carries over to any number of dimensions [6], and also, for odd dimensions at least, to
the formulation of discrete Wigner functions [7].

The Weyl correspondence between operators and functions on phase space—of which the
Wigner function is an example—is a special case of the class of the correspondences given
by Cohen [8]. In particular, if any Wigner function is convoluted, or smeared, by integration
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with respect to the Wigner function of the vacuum state, itself a gaussian function on phase
space, then the smoothed function, called the Q-function (or Husimi function), is non-negative
and corresponds to an ordering in Cohen’s class different from that of Wigner and Weyl [9].
More generally, if any Wigner function is convoluted with respect to a Gaussian function
which is itself the Wigner function of a pure coherent state, then the result is non-negative
[6, 9–13].

The Wigner function is bilinear with respect to wavefunctions. For instance if the Weyl
transform of the pure state |ψ〉〈ψ | is written (|ψ〉〈ψ |)(p,q), then the corresponding Wigner
function [3, 5] is

ρ(p, q) = 1

h
(|ψ〉〈ψ |)(p,q)

= 1

h

∫ ∞

−∞
dx exp

(
i

h̄
px

)
ψ

(
q − x

2

)
ψ∗

(
q +

x

2

)
, (1)

so the smeared Wigner functions are also bilinear with respect to the wavefunctions.
It is also possible in a sense to smear the states themselves, for instance by projecting

them onto a class of generalized displaced coherent states, defined [14] by

|p, q; σ 〉 ≡ D̂[p, q]|σ 〉, (2)

where |σ 〉 is any reference ‘fiducial’ state, and

D̂[p, q] = e
i
h̄
(pq̂−qp̂) (3)

is Weyl’s displacement operator. Then, corresponding to any wavefunction |ψ〉 one can define
a ‘smoothed’ wavefunction on phase space by projecting it onto the coherent state:

ψ̃σ (p, q) ≡ 〈σ |D̂†[p, q]|ψ〉. (4)

These functions and their time dependence when ψ is driven by the Hamiltonian p̂2/2m +
V (q) have been studied for some choices of |σ 〉 by Torres-Vega et al, Harriman, and others
[15–17].

In this paper I generalize ψ̃σ (p, q) to a phase space wavefunction ψ̃(λ)
σ (p, q) by relating

it to a class of orderings labelled by a parameter λ ∈ (−1, +1), where ψ̃(0)
σ (p, q) = ψ̃σ (p, q),

equation (4). A given value of λ specifies an association between functions on phase

space and operators, A(p, q)
(λ)←→ Â, where λ = −1 gives the standard ordering (e.g.

pnqm ←→ q̂mp̂n), λ = +1 gives the anti-standard rule (e.g. pnqm ←→ p̂nq̂m), and λ = 0
gives the symmetric or Weyl association, of which (1) is an example with ρ(p, q) ←→ ρ̂/h.
The time dependence, effectively, of ψ̃(λ)

σ (p, q) has been studied in [18].
ψ̃(λ)

σ (p, q) relates to the λ-orderings of the operator |ψ〉〈σ |, which is linear in the states
|ψ〉 (the reference or fiducial state is held fixed), but the density matrix ρ̂ = |ψ〉〈ψ | is
bilinear, so a chosen ordering for |ψ〉〈σ | will not be expected to apply to the density matrix,
indeed it may not even be of the λ-class. The generalized Q-function for a pure state |λ〉,
defined as

∣∣ψ̃(λ)
σ (p, q)

∣∣2/
h, is normalized with respect to the integral

∫
dpdq over all of phase

space. The main results of this paper are that the generalized Q-function corresponding to any
state ρ̂ is, first, non-negative, second, proportional to the expectation of ρ with respect to a
certain generalized displaced squeezed state which depends upon σ, λ and (p, q) and, third,
proportional to the convolution of the Wigner functions for ρ with the Wigner function for
that squeezed state.

The field of quantum mechanics in phase space is a large one, perhaps starting with the
analysis of Weyl [1, 2] and of Wigner [3]. In the context of this paper Bopp [19] in 1956
considered classical-like implications of that Q-function corresponding to the Weyl ordering
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(λ = 0) and with fiducial state chosen (as is usually the case) to be the vacuum state |0〉 ≡ |h0〉,
namely 〈h0|D̂[p, q]†ρ̂(t)D̂[p, q]|h0〉. That this can be related to the modulus squared of a
wavefunction, here ψ̃

(0)
h0

(p, q) was pointed out by Mizrahi [20] who also studied some of its
properties. On a different tack, Cahill and Glauber [21, 22] have studied at length a family

of orderings (the s-family) A
(s)←→ A(p, q), centred around the annihilation and creation

operators â and â†, where (in my notation) â = 1√
2

(
αq̂ + i p̂

αh̄

)
—where α is a real parameter—

so that [â, â†] = 1. Defining the complex numbers A = 1√
2

(
αq + i p

αh̄

)
, when s = −1

their mapping corresponds to the association (antinormal ordering) âmâ†n ←→ AmA∗n, when
s = 1 the association is â†mân ←→ A∗mAn (normal ordering), and when s = 0 the ordering
is that of Weyl. Thus the λ and s mappings complement each other, and overlap at λ = 0 = s.
Among their many interesting results Cahill and Glauber define what is effectively a phase
space wavefunction corresponding to |ψ〉〈h0| for their s-ordering, but they do not relate its
modulus squared to any s-ordered Q-function. They do, however, express the usual Q-function,
〈h0|D̂[p, q]†ρ̂(t)D̂[p, q]|h0〉, as a smoothed Wigner function.

In this note I start with the modulus squared of wavefunctions on phase space, of which
equation (4) is a special case, and show that it can correspond to smeared Wigner functions,
where the smearing functions themselves are Wigner functions of generalized displaced
squeezed states. Section 2 discusses wavefunctions on phase space and generalizes them
to the λ-class of orderings. Section 3 develops expressions for the Q-functions based on these
wavefunctions. Section 4 discusses some properties of these Q-functions.

2. Wavefunctions on phase space

It is often convenient to work with the Fourier transform of ψ̃σ (p, q), defined by

ψσ (p, q) =
∫ ∞

−∞

dp′ dq ′

h
exp

[
i

h̄
(p′q − q ′p)

]
ψ̃σ (p′, q ′)

= Tr(|ψ〉〈σ |�̂(p, q)), (5)

where [5]

�̂(p, q) =
∫ ∞

−∞

dp′ dq ′

h
exp

[
− i

h̄
(p′q − q ′p)

]
D̂[p′, q ′]

=
∫ ∞

−∞
dx exp

(
i

h̄
px

)∣∣∣∣q +
x

2

〉 〈
q − x

2

∣∣∣∣. (6)

The wavefunctions ψσ (p, q) were defined in [18] where many of their properties are discussed.
In particular, they are the Weyl transform of the operators |ψ〉〈σ |. Indeed, the Weyl transform,
which I shall write (Â)(p,q) or A(p,q), and its associated operator Â are related [5] by

Â =
∫ ∞

−∞

dp dq

h
A(p,q)�̂(p, q), (7)

which, by virtue of the relation

Tr(�̂(p, q)�̂(p′, q ′)) = hδ(p − p′)δ(q − q ′), (8)

can be inverted to give

A(p,q) = Tr(Â�̂(p, q)). (9)

So ψσ (p, q) is the Weyl transform (|ψ〉〈σ |)(p,q), and ψ̃σ (p, q) is its Fourier transform.
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Another property of the Weyl transform which we need [5] is

Tr(ÂB̂) =
∫ ∞

−∞

dp dq

h
A(p,q)B(p,q). (10)

Note from (6) that Tr(�̂(p, q)) = 1 so, from (9), (1̂)(p,q) = 1, and (letting B̂ = 1̂ in (10))

Tr Â =
∫ ∞

−∞

dp dq

h
A(p,q). (11)

The essential characteristic of the Weyl correspondence follows from equations (3) and
(9) together with the first of (6). It is

(ei(ξ q̂+ηp̂))(p,q) = ei(ξq+ηp). (12)

Other orderings defined by Cohen [8] can be specified by the generalization of (12) to the form

(ei(ξ q̂+ηp̂))
f

(p,q) = 1

f (ξ, η)
ei(ξq+ηp) = f −1(−i∂q,−i∂p) ei(ξq+ηp), (13)

where f −1 means 1/f and the choice f = 1 gives the Wigner–Weyl ordering. Note that when
f (0, η) = 1 = f (ξ, 0) then the Weyl transform of a function of q̂ (or p̂) only is the same
function of q (or p) only. If we particularize to the class of orderings defined by the function

f (ξ, η; λ) = ei h̄
2 λξη, (14)

where λ is a real parameter lying in the interval [−1, +1], then

(ei(ξ q̂+ηp̂))
(λ)

(p,q) = e−i h̄
2 λξη ei(ξq+ηp). (15)

Use of the Baker–Campbell–Hausdorff theorem leads to the equivalent expressions

(eiξ q̂ eiηp̂)
(λ)

(p,q) = e− ih̄
2 (λ+1)ξη ei(ξq+ηp)

and

(eiηp̂ eiξ q̂ )
(λ)

(p,q) = e− ih̄
2 (λ−1)ξη ei(ξq+ηp).

The choice λ = −1 in the first of these gives the ‘standard’ or ‘p’ association (p̂ first, then q̂),

(eiξ q̂ eiηp̂)
(−1)

(p,q) = ei(ξq+ηp)

and the choice λ = 1 in the second gives the ànti-standard association (q̂ first, then p̂),

(eiηp̂ eiξ q̂ )
(+1)

(p,q) = ei(ξq+ηp),

while the Wigner–Weyl ordering, λ = 0, puts p̂ and q̂ on equal footing, equation (12).
The generalization of ψσ (p, q) to the family of orderings defined by equations (14) and

(15) is given [18] by

ψ(λ)
σ (p, q) = Tr(|ψ〉〈σ |�̂(λ)(p, q)) = 〈σ |�̂(λ)(p, q)|ψ〉, (16)

where

�̂(λ)(p, q) = ei h̄
2 λ∂p∂q �̂(p, q). (17)

Equations (16) and (17) generalize the phase space wavefunction ψσ (p, q), the Weyl transform
of |ψ〉〈σ |, to the class of orderings defined by (14).
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3. Q-functions

The functions ψσ (p, q) are normalized—this follows from the second of equations (5) and
(10)—and so too are the ψ̃σ (p, q) by dint of the Fourier relation, equation (5). Further, by
taking matrix elements of the quantities in equations (3) and (7) one finds [23] that

�̂(p, q) = 2D̂[2p, 2q]�̂ or D̂[p, q] = 1
2�̂(p/2, q/2)�̂, (18)

where �̂ is the parity operator, i.e.

�̂ =
∫ ∞

−∞
dx|x〉〈−x|. (19)

From these equations we can define a generalized displacement operator as

D̂(λ)[p, q] = 1
2�̂(λ)(p/2, q/2)�̂ (20)

with corresponding generalized ‘coherent state’ D̂(λ)[p, q]|σ 〉 and phase space wavefunction
(partner and equivalent to ψ(λ)

σ (p, q)) given by

ψ̃(λ)
σ (p, q) = 〈σ |D̂(λ)†[p, q]|ψ〉. (21)

Consider the product(
µ(λ)

σ (p, q)
)∗

ψ(λ)
σ (p, q) =

∫
dτ ′

∫
dτ ′′ ei λ

2h̄ p′q ′
e−i λ

2h̄ p′′q ′′

× e
i
h̄
(p′q−q ′p)e− i

h̄
(p′′q−q ′′p)ψ̃σ (p′, q ′)(µ̃σ (p′′, q ′′))∗, (22)

where I have used (5), (16) and (17) and
∫

dτ ′ stands for
∫ ∞
−∞ dp′dq ′/h, etc. By equations (4),

(9) and (10) we can write

ψ̃σ (p′, q ′)(µ̃σ (p′′, q ′′))∗ =
∫

dτ(|ψ〉〈µ|)(p,q)(D̂(p′′, q ′′)(|σ 〉〈σ |D̂†(p′, q ′))(p,q), (23)

which is an integral over the product of two Weyl transformed operators. In particular, by
definition (9) the second term is

(D̂(p′′, q ′′)(|σ 〉〈σ |D̂†(p′, q ′))(p,q) = 〈σ |D̂†(p′, q ′)�̂(p, q)D̂(p′′, q ′′)|σ 〉. (24)

To simplify this quantity one can express �̂ here in terms of D̂ (equation (6)) and then
simplify the resulting triple product of displacement operators by means of these useful
algebraic properties [14]:

D̂†[p, q] = D̂[−p,−q],

D̂†[p, q](p̂, q̂)D̂[p, q] = (p̂ + p, q̂ + q),

D̂[p2, q2]D̂[p1, q1] = e
i

2h̄ (q1p2−q2p1)D̂[p1 + p2, q1 + q2].

(25)

Utilizing the action of the unitary operator D̂ on �̂ itself can also help. For instance, using
the second of (25) with the first of equations (6) one finds

D̂†[p′, q ′]�̂(p, q)D̂[p′, q ′] = �̂(p − p′, q − q ′). (26)

The upshot is that by direct calculation equations (22) to (26) can be combined and simplified
to give(
µ(λ)

σ (p, q)
)∗

ψ(λ)
σ (p, q) =

(
4

1 − λ2

) ∫
dτ ′(|ψ〉〈µ|)(p′,q ′)(|σ 〉〈σ |)

(
2p−(1+λ)p′

(1−λ)
,

2q−(1−λ)q′
(1+λ)

)
. (27)
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It is easy to see from this result that∫
dτ

(
µ(λ)

σ (p, q)
)∗

ψ(λ)
σ (p, q) = 〈µ|ψ〉, (28)

as it must [18].
From (27) we can find an analogous expression for the pair

(
ψ̃(λ)

σ , µ̃(λ)
σ

)
. By equations (21),

(10) and (20) it is(
µ̃(λ)

σ (p, q)
)∗

ψ̃(λ)
σ (p, q) = Tr(|ψ〉〈µ|D̂(λ)[p, q]|σ 〉〈σ |D̂(λ)†[p, q])

= 1

4

∫
dτ ′(|ψ〉〈µ|)(p′,q ′)

× 〈σ |�̂�̂(λ)†(p/2, q/2)�̂(p′, q ′)�̂(λ)(p/2, q/2)�̂|σ 〉
= 1

4

∫
dτ ′(|ψ〉〈µ|)(p′,q ′)〈σ |�̂(λ)†

× (−p/2,−q/2)�̂(−p′,−q ′)�̂(λ)(−p/2,−q/2)|σ 〉, (29)

where I have recognized (using �̂ with the first of equations (6)) that

�̂�̂(λ)(p, q)�̂ = �̂(λ)(−p,−q).

Similarly (use an analysis based on (16))(
µ(λ)

σ (p, q)
)∗

ψ(λ)
σ (p, q) =

∫
dτ ′(|ψ〉〈µ|)(p′,q ′)

×〈σ |�̂(λ)(p, q)�̂(p′, q ′)�̂(λ)†(p, q)|σ 〉. (30)

Since �̂(λ)†(p, q) = �̂(−λ)(p, q) it follows from (29) and (30) that multiplying by 1/4 and
making the substitutions (p, q, p′, q ′, λ) → (−p/2,−q/2,−p′,−q ′,−λ) in (27) gives

(
µ̃(λ)

σ (p, q)
)∗

ψ̃(λ)
σ (p, q) =

(
1

1 − λ2

) ∫
dτ ′(|ψ〉〈µ|)(p′,q ′)(|σ 〉〈σ |)

(
(1−λ)p′−p

(1+λ)
,

(1+λ)q′−q

(1−λ)
)
. (31)

This also obeys an equation like (28).
The second term in the integrand here is the Weyl transform of the pure state |σ 〉〈σ |,

namely, from (9),

(|σ 〉〈σ |)
(

(1−λ)p′−p

(1+λ)
,

(1+λ)q′−q

(1−λ)
)
= 〈σ |�̂

(
(1 − λ)p′ − p

(1 + λ)
,
(1 + λ)q ′ − q

(1 − λ)

)
|σ 〉.

This can be simplified using the displacement operator D̂ and the unitary dilation, or squeeze,
operator ([24, 25])

Ŝ(ξ) = ei ξ

2h̄ (p̂q̂+q̂p̂), (32)

which has the properties

Ŝ†(ξ) = Ŝ(−ξ) and Ŝ†(ξ)(p̂, q̂)Ŝ(ξ) = (eξ p̂, e−ξ q̂), (33)

so that (using this with (3) and (6))

Ŝ†(ξ)�̂(p, q)Ŝ(ξ) = �̂(e−ξp, eξ q). (34)

Then

(|σ 〉〈σ |)
(

(1−λ)p′−p

(1+λ)
,

(1+λ)q′−q

(1−λ)
)
= 〈p, q, λ; σ |�(p′, q ′)|p, q, λ; σ 〉
= (|p, q, λ; σ 〉〈p, q, λ; σ |)(p′,q ′), (35)
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where

|p, q, λ; σ 〉 = D̂

[
p

1 − λ
,

q

1 + λ

]
Ŝ

(
ln

1 + λ

1 − λ

)
|σ 〉 (36)

is a displaced squeezed state [14, 24, 25] generalized to an arbitrary fiducial state |σ 〉. And so(
µ̃(λ)

σ (p, q)
)∗

ψ̃(λ)
σ (p, q) =

(
1

1 − λ2

) ∫
dτ ′(|ψ〉〈µ|)(p′,q ′)(|p, q, λ; σ 〉〈p, q, λ; σ |)(p′,q ′)

=
(

1

1 − λ2

)
〈p, q, λ; σ |ψ〉〈µ|p, q, λ; σ 〉. (37)

By a slight rearrangement we can also write(
µ̃(λ)

σ (p, q)
)∗

ψ̃(λ)
σ (p, q) =

(
1

1 − λ2

)

×
∫

dτ ′(|ψ〉〈µ|)(p′,q ′)(|λp,−λq, λ; σ 〉〈λp,−λq, λ; σ |)(p′−p,q ′−q). (38)

Setting |µ〉 = |ψ〉, generalizing from |ψ〉〈ψ | to the density matrix ρ̂ = ∑
wψ |ψ〉〈ψ |,

and dividing by h gives the ‘diagonal’ component of this sesquilinear form, the generalized
Q-function. Non-negative by construction, from (37) and (38) it is

Q̃(λ)
σ (p, q; ρ) ≡ 1

h

∑
ψ

wψ

∣∣ψ̃(λ)
σ (p, q)

∣∣2

= 1

h

(
1

1 − λ2

)
〈p, q, λ; σ |ρ̂|p, q, λ; σ 〉

=
(

1

1 − λ2

)∫
dp′ dq ′ρ(p′, q ′)ρ(λ)

σ (p;p′ − p, q ′ − q), (39)

where

ρ(p, q) = 1

h
(ρ̂)(p,q) = 1

h
Tr(ρ̂�̂(p, q)) (40)

is the Wigner function for the state ρ̂, |p, q, λ; σ 〉 is given by (36), and ρ(λ)
σ is the Wigner

function corresponding to the p and q dependent squeezed state |λp,−λq, λ; σ 〉:
ρ(λ)

σ (p;p′ − p, q ′ − q) = 1

h
(|λp,−λq, λ; σ 〉〈λp,−λq, λ; σ |)(p′−p,q ′−q). (41)

The multiplier 1/h is chosen by convention so that Q̃(λ)
σ (p′, q ′; ρ), ρ(p′, q ′) and ρ(λ)

σ (p;p′ −
p, q ′ − q) are all normalized with respect to the integral

∫
dp′dq ′.

4. Discussion

When there is no squeezing of the fiducial state then λ → 0, |λp,−λq, λ; σ 〉 → |σ 〉, and
|p, q, λ; σ 〉 → |p, q; σ 〉 (defined in equation (2)). In that case

Q̃(0)
σ (p, q; ρ) ≡ Q̃σ (p, q; ρ) = 1

h
〈p, q; σ |ρ̂|p, q; σ 〉

=
∫

dp′ dq ′ρ(p′, q ′)ρσ (p′ − p, q ′ − q), (42)

where

ρ(p, q) = 1

h
Tr(ρ̂�(p, q))
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and

ρσ (p, q) = 1

h
Tr(|σ 〉〈σ |�(p, q))

are the Wigner functions corresponding to the states ρ̂ and |σ 〉〈σ |.
When |σ 〉 is the vacuum state, Q̃σ (p, q; σ) is the well-known Husimi or Q-function and

the content of equations (42) is well known, [9, 11, 20, 22]. Generalized to an arbitrary
fiducial state |σ 〉 the first of equations (42) says that the Q-function is the expectation of
state ρ̂ with respect to the coherent state of equation (2) while the second expresses it as the
Wigner function for ρ̂ smeared with respect to the Wigner function for |σ 〉〈σ |. The two Weyl
transformed functions which are convoluted in equation (42) each separately corresponds to
the scheme of equation (13) with f (ξ, η) = 1, and Q̃σ (p, q; σ) itself is also a member of that
class of correspondences. This follows the convolution theorem. For instance, we can define
the Fourier component, [Â](p,q), of the Weyl transform (Â)(p,q) of an operator Â, as

[Â](p,q) =
∫

dp′ dq ′

h
e

i
h̄
(p′q+q ′p)(Â)(p′,q ′),

and using this in equation (42) gives

Q̃σ (p, q; σ) = f −1(−i∂q,−i∂p)ρ(p′, q ′), (43)

where

f −1(ξ, η) = [|σ 〉〈σ |](h̄ξ,h̄η).

The customary choice for the fiducial state is the vacuum [9, 11]. In particular, for a harmonic
oscillator in the ground state |σ 〉 = |0〉, where

〈x|0〉 = α1/2

π1/4
e− 1

2 α2x2
, and α2 = mω

h̄
,

which gives for the Weyl transform of |0〉〈0| and its Fourier component

(|0〉〈0|)(p,q) = 2 e−α2q2
e− p2

α2h̄2 and [|0〉〈0|](h̄ξ,h̄η) = e− ξ2

4α2 e− α2h̄2η2

4 .

Thus, even when there is no squeezing (i.e. λ = 0) what was a Weyl association f = 1
(equation (12)) for the phase space wavefunction |ψ〉〈h0| becomes an association

f (ξ, η) = e
ξ2

4α2 e
α2h̄2η2

4 (44)

for the Q-function, equation (43). Although the function f (ξ, η) of equation (44) does not
have the properties f (0, η) = 1 = f (ξ, 0) the distribution Q̃σ (p, q; σ) which it generates
is non-negative. It is a positive operator-valued measure (POM) [26]. This association is a
special case of the s-family of orderings considered by Cahill and Glauber [21, 22], which in
the notation of this paper can be written

f (s)(ξ, η) = es
ξ2

4α2 es
α2h̄2η2

4 .

For λ �= 0 the functions Q̃(λ)
σ (p, q; ρ), equation (39), are also a POMs, but owing to

the extra p-dependence of the smoothing function they do not have corresponding functions
f (ξ, η). The form of equation (39) shows that Q̃(λ)

σ is proportional to the average of ρ̂ with
respect to the state |p, q, λ; σ 〉, equation (36). In other words, Q̃(λ)

σ is proportional to the
probability of finding the system in the state |p, q, λ; σ 〉 when it has been prepared in the state
ρ̂. The state |p, q, λ; σ 〉 is a minimum uncertainty squeezed state when the fiducial state |σ 〉
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is the vacuum state. To see this using (25), (33) and (36) it is easy to show that, for any choice
of |σ 〉,

〈p, q, λ; σ |p̂|p, q, λ; σ 〉 = p

1 − λ
+

(
1 + λ

1 − λ

)
〈σ |p̂|σ 〉,

〈p, q, λ; σ |q̂|p, q, λ; σ 〉 = q

1 + λ
+

(
1 − λ

1 + λ

)
〈σ |q̂|σ 〉,

and that for momentum and position the standard deviations for this state are

�(λ)
σ (p) =

∣∣∣∣ 1 + λ

1 − λ

∣∣∣∣ �σ(p) and �(λ)
σ (q) =

∣∣∣∣1 − λ

1 + λ

∣∣∣∣�σ(q),

where �σ(p) and �σ(q) are the corresponding standard deviations for state |σ 〉. So, whatever
the degree of squeezing, �(λ)

σ (p)�(λ)
σ (q) = �σ(p)�σ (q), and for the vacuum state this

product is the minimum value h̄/2.
We could equally choose to work with ψ(λ)

σ instead of ψ̃(λ)
σ . For instance

Q(λ)
σ (p, q; ρ) ≡ 1

h

∑
ψ

wψ

∣∣ψ(λ)
σ (p, q)

∣∣2
(45)

is directly related to Q̃(λ)
σ (p, q; ρ), for from equations (16), (17), (20) and (21) we have

ψ̃(λ)
σ (p, q) = 1

2 〈σ |�̂�̂(λ)†(p/2, q/2)|ψ〉 = 1
2ψ(−λ)

σr
(p/2, q/2), (46)

so that

ψ(λ)
σ (p, q) = 2ψ̃(−λ)

σr
(2p, 2q), (47)

where |σr〉 = �̂|σ 〉 is a reflected fiducial state.
The time dependence of Q̃(λ)

σ (p, q; ρ)—or of Q(λ)
σ (p, q; ρ)—enters through the time

dependence of ρ̂, for instance via its Weyl transform h×ρ(p′, q ′) in the third of equations (39).
The equation of motion of Wigner functions is well known [5] and can be transferred to
Q̃(λ)

σ (p, q; ρ) itself by partial integration in equation (39). Another way would be to find the
time dependence of ψ̃(λ)

σ (p, q) itself which enters through the time dependence of |ψ〉. In [18]
it was chosen to study the time variation of ψ(λ)

σ (p, q)—as it is itself a Weyl transform and,
from that standpoint, basic—when driven by a Hamiltonian Ĥ = p̂2/2m + V (q̂). According
to equations (46) and (47), this knowledge transfers to ψ̃(λ)

σ (p, q).
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